صور حب




منتدي صور حب
العودة   منتدي صور حب > اقسام الصور الــعـــامــة > ابحاث علمية - أبحاث علميه جاهزة

إضافة رد
LinkBack أدوات الموضوع انواع عرض الموضوع
  #1  
عضو جديد
 
تاريخ التسجيل: Mar 2018
المشاركات: 18,929
افتراضي بحث ممتاز بحث عن الطاقة الهيدروجينية . الوقود الأبدي . بحث جاهزعن الطاقة الهيدروجينية . بحث متك





بحث ممتاز
 بحث عن الطاقة الهيدروجينية الوقود الأبدي بحث جاهزعن الطاقة الهيدروجينية بحث متك

السلام عليكم ورحمة الله وبركاته
يسعدنا ان نعرض لكم كل ما هو جديد في مجال البحث العلمي
كل ماهو جديد في ابحاث علمية 2018 - 2018



امل و جاهز عن الطاقة الهيدورجينية.بحوث علمية متكاملة . بحث جاهز



الطاقة الهيدروجينية
الوقود الأبدي :
فى نفس الوقت الذي تنحسر معه شمس الوقود الحفري ويقل استخدام البترول كوقود أساسي، يشهد العالم ولادة مصدر آخر للطاقة سيكون له القدرة على إعادة صياغة شكل الحضارة الإنسانية على وجه الأرض، إنها حضارة الهيدروجين، هذا العنصر الذي يمثل أحد المكونات الأساسية للمادة، أجل، سيكون الهيدروجين بحق الوقود الأبدي الذي لا ينفد مع مر الع، كما أنه العنصر الوحيد الذي لا ينتج عند احتراقه أي انبعاثات ضارة للبيئة، بل إن الانبعاثات الصادرة عنه هي كل ما نسعى إليه مثل الكهرباء أو الحرارة أو الماء النقي! إننا على أعتاب انقلاب اقتصادي وسياسي جديد قوامه الهيدروجين، انقلاب سيحدث تغييرا جذريا في طبيعة الأسواق المالية والظروف السياسية والاجتماعية، تماما مثلما فعل الفحم والبخارعند بداية عصر الصناعة، يبين الشكل التالي المخطط الزمني لظهور كل نوع من الوقود و الفترة التي بلغ فيها معدل الاستهلاك الأعظمي في أسواق الوقود :






محطات طاقة لا مركزية :
وفي ظل الثورة الهيدروجينية، سيكون مصدر الطاقة بمثابة المستهلك والمنتج في آن واحد، بمعنى آخر، عندما يقوم ملايين المستهلكين بتوصيل خلايا الوقود لديهم بشبكات الطاقة الهيدروجينية المحلية أو الإقليمية أو الدولية، يبدأ الطرفان المستهلك والشبكة المشاركة في الطاقة من خلال إنشاء شكل جديد من التوليد والاستخدام اللامركزيين لمصادر الطاقة، إن المستقبل يحمل بين طياته ثورة اقتصادية واجتماعية هائلة يشترك فيها جميع الأفراد والهيئات في عملية استهلاك وإنتاج وبيع الطاقة الهيدروجينية، وإن صح التعبير ستحقق ثورة الهيدروجين مفهوم «الطاقة الديمقراطية». ولنأخذ مثالا عمليا يوضح لنا حيوية تلك المعادلة، فعندما يصبح لديك سيارة تعمل بخلايا الوقود فأنت بالتأكيد تمتلك محطة كهرباء متنقلة تستطيع توليد25 كيلو واط من الكهرباء، ودعنا نتخيل ما سيحدث في المستقبل القريب عندما تذهب إلى العمل بواسطة سيارتك المجهزة بالخلايا الهيدروجينية، فبدلا من تركها بساحة الانتظار مهدرا للوقت والمكان بدون فائدة، ما عليك إلا توصيلها بمخرج الغاز الطبيعي الموجودة بالمبنى، وعند انتهاء الدوام تستقل سيارتك بعد شحنها وهي محملة بحوالي 25 كيلو واط من الكهرباء التي تصلح لتشغيل السيارة أو لإضاءة أو تدفئة أي مكان آخر، وتشير الإحصائيات الحديثة أن السيارات تقف بأماكن الانتظار بدون حركة لأكثر من 96% من إجمالي الوقت، وبالتالي يمكن الاستفادة القصوى من هذا الوقت الضائع في شحن السيارات بالطاقة الهيدروجينية وتحقيق الأرباح أيضا.


كيمياء الهيدروجين:
يتميز الهيدروجين بوضع خاص في الجدول الدوري ، فهو أخف العناصر ، و يمتلك أبسط تركيب الكتروني ، فذرته تتألف من بروتون واحد و يتحرك الكترونه الوحيد في المدار 1S و هو في سويته الطبيعية . يشبه المعادن القلوية ( عناصر الفصيلة IA ) باحتوائه على الكترون واحد في المدار S و كذلك يشبه الهالوجينات ( عناصر الفصيلة VIIB ) بكونه يحتاج إلى الكترون واحد ليصل إلى تركيب الغاز النادر ، و هو الهليوم ، و يشكل بذلك شاردة الهيدريد السالبة . فيزيائياً يتواجد بالحالة الغازية في درجة الحرارة و الضغط الطبيعيين يتميع تحت ضغوط عالية و درجات حرارة متدنية جداً ، و هو عنصر خفيف نفوذ ذو قيمة حرارية مرتفعة .
وجوده في الطبيعة :
الهيدروجين الحر موجود في الجو الشمسي و في الغازات البركانية و في الجو الأرضي بمقدار جزء من مليون ( نسبة حجمية ) سرعته الجزيئية عند درجات الحرارة العادية عالية جداً مما يسمح له بالخروج من مجال الجاذبية الأرضية ، و هو يدخل في تركيب الماء و المواد العضوية كالخشب و الزيوت ، و هو يوجد بمقدار 0.9% تقريباً من القشرة الأرضية .


الحصول على الهيدروجين:
إن الخاصية التي يتميز بها الهيدروجين هو استحالة توفره في الطبيعة بة منفردة، بل يجب استخراجه من مواد أخرى مثل الماء والمكونات الهيدروكربونية أو الكربون المهدرج، أن ما يقرب من نصف الهيدروجين المنتج بالعالم يتم استخراجه من الغاز الطبيعي وذلك من خلال إجراء تفاعلات كيميائية بين الغازالطبيعي وبخار الماء وتعريضه لعوامل أخرى محفزة، حيث يتم في النهاية فصل ذرات الهيدروجين عن ثاني أكسيد الكربون الذي يلعب دورا أساسيا في ارتفاع درجة حرارة الأرض أو ما يسمى بظاهرة الاحتباس الحراري. ومن الممكن أيضا الحصول على الهيدروجين صناعياً من خلال طريقتين رئيسيتين: تعتمد الطريقة الأولى على تحويل الفحم الحجري إلى الحالة الغازية( طريقة بوش ) : تتم هذه الطريقة على عدة خطوات : إدخال البخار على فحم الكوك المسخن حتى 1200 C يتم التفاعل الماص للحرارة :
( غاز الماء ) C + H2O → CO + H2
تنخفض درجة الحرارة إلى حوالي 800 C يدخل في الخطوة التالية الهواء ( 4N2+O2) الذي يتفاعل مع الكربون و يؤدي إلى ارتفاع درجة الحرارة ثانية إلى حوالي 1200 C ذلك لأنه تفاعل ناشر للحرارة
2C + ( 4N2 + O2 ) → 2CO + 4N2
في الخطوة الأخيرة يعالج غاز الماء مع بخار الماء في الدرجة 450 C بوجود وسيط من أوكسيد الحديد
CO + H2 + H2O ↔ CO2 + 2 H2
و نلاحظ أن التفاعل عكوسي لذا يتخلص من CO2 بمعالجته بمحلول قلوي ساخن أو بواسطة الماء تحت ضغط مرتفع 50 bar . 2- الحصول على الهيدروجين كناتج ثانوي في تفاعلات تكسير الفحوم الهيدروجينية ( المتان مثلاً ) :
CH4 ∆→ C + 2 H2 ( 800-1100) C
لكن لهاتين الطريقتين عيوب كثيرة، أهمها التكلفة الباهظة وزيادة انبعاث غاز ثاني أكسيد الكربون. و قد ركزت التطبيقات الصناعية على الطريقة الأولى و هي طريقة بوش و فيما يلي إحدى التطبيقات الصناعية العملية لهذه الطريقة ( محطة توليد الهيدروجين ) : نص عريض


مخطط محطة توليد للطاقة الكهربائية و الهيدروجين :
تعتمد هذه المحطة على خطة فصل الهيدروجين من بخار الماء ثم دخوله في التفاعل مع غازات الجسم العامل ثم نعود لنزع الهيدروجين النقي من تيار الغاز العامل الذي يذهب إلى العنفات :
وصف النظام :
خطة الفصل الغشائية مبينة بينياً في الشكل (1) تتكون المحطة من الأجزاء الرئيسية التالية :
1- وحدة فصل الهواء
2- وحدة تحويل الكربون إلى الحالة الغازية
3- مفاعل WGS منخفض درجة الحرارة
4- وحدة فصل الهيدروجين ( HSMR )
5- وحدات امتصاص تأرجحات الضغط( PSA )
6- دارة عنفة غازية لتوليد الكهرباء ( GTCC )
7- ضواغط الهيدروجين و ثاني أوكسيد الكربون
8- مبادلات حرارية






إنتاج غاز Syngas :
يتم استخدام فحم كولورادو القاري السريع التبخر الذي مكوناته:


73.4%-- C --5.1% H -- 6.5% O -- 1.3% N ، 0.6% S


نسبة الرطوبة فيه : 11.4% ، و الرماد : 11.7% ، و القيمة الحرارية له : HHV=29.58 Mj/Kg . يتم تحويل هذا الفحم إلى الحالة الغازية وفق تيار مسحوب من الأوكسجين يتم تدويره بشكل إعصاري ، و تتم عملية تحويل الطين الخبثي إلى غاز تحت ضغط 70 bar ، و العملية بكاملها تعتمد على التوازن الكيميائي . يتم الحصول على الأوكسجين ذو النقاوة 95% بكامله في وحدة فصل الأوكسجين من الهواء ( ASU ) . يمر بعدها غاز Syngas الذي درجة حرارته 1330 C خلال المبرد حيث يتم تنقيته من الجزيئات و المياه المنحلة و يبرد إلى الدرجة 250 C ثم يتم إشباعه بالبخار حيث تكون نسبة البخار إلى الكربون لا تقل عن 2.1 و ذلك لتفادي تشكل أية مركبات للكربون في مفاعل WGS باتجاه الجريان ( و ذلك وفقاً للمرحلة الأولى لطريقة بوش ). ثم يمر بعد ذلك غاز Syngas على درجة حرارة عالية 450 C في عملية أديباتية في وحدة WGS التي تحول 87% من مركبات غاز Syngas إلى H2 و CO2 ( و ذلك وفقاً للمرحلة الثانية لطريقة بوش ) و ذلك وفق النسب التالية : (3.0% CO ، 23.3% CO2 ، 34.2% H2) مما يؤدي إلى رفع درجة الحرارة بحدود 200C . تستخدم كل مفاعلات WGS الكبريتيد و الأملاح الحامضية للكوبالت كمادة محفزة على شكل حاجز فصل ، حيث يجتاز H2S هذا الحاجز دون أن يتأثر بينما يتم تحويل COS إلى H2S .




قاعدة فصل الغاز :
تتم هذه العملية باستخدام غشاء فصل هيدروجيني و هو ما يرمز له بالرمز (HSMR) و هو اختصار لـ : (H2 separation membrane reactor ) و الذي يقوم بمهمة تغيير التركيب الكيميائي لغاز ( Syngas ) إضافة لعملية فصل الهيدروجين . إن درجة الحرارة القصوى التي تتم تحتها العملية 450 C تضمن حصول حركة كيميائية سريعة و أداء متوازن دائم من خلال تيار الهيدروجين المستمر الذي يتم انتزاعه في نفس الوحدة . التصنيفات الرئيسية الثلاثة للأغشية النفوذة للهيدروجين : الخزف النفوذ ، و الخزف الكثيف الناقل للأيونات الموجبة ، و المعدن الكثيف ، و نحن سوف نركز هنا على النوع الثالث و الذي يكون على شكل أنابيب ، و التي تتم فيها العملية بشكل أديباتي و بجريان منتظم للجسم العامل . يتكون الغشاء من الكبريتيد و فيلم رقيق من عنصر البلاديوم ( Pd ) سماكته ( 10 µm ) مخلوط بنسبة 40% بالنحاس ( Cu )، تحيط به قناة معدنية مسامية داعمة له ، مع وجود طبقة من الأوكسيد لمنع الامتزاج بين الفيلم الرقيق (Pd+Cu) و الركيزة ، و يتم اختبار هذه الأغلفة بظروف هي ( تحت درجة حرارة 300-600 C و ضغط 35 bar ، وبتركيز لغاز H2S أعلى بـ 10% من تركيز الهيدروجين ). يمكن استخدام و حدات فصل ( HSMR ) بسيطة التصميم و ذات كلفة غير عالية نسبياً. إن القسم الأكبر من العملية يتم بسرعة في حدود 20% الأولىمن طول المفاعل و يتم فيها نفاذ القسم الأكبر من الهيدروجين . ثميمرر الهيدروجين بعدها على مبادل حراري ليخرج منه بدرجة حرارة 30 C إلى ضاغط الهيدروجين ليرفع ضغطه إلى 60 bar و منه إلى أنابيب الهيدروجين . طبعاً تقوم دارة العنفة الغازية بتوليد الكهرباء كناتج آخر عن هذه المحطة ( إضافة للهيدروجين ) و ذلك وفقاً للأرقام التالية الموجودة مع مخطط المحطة .



الحصول على الهيدروجين بتحليل الماء كهربائياً :
يتشكل الهيدروجين بالتحليل الكهربائي للماء بوجود آثار من الحموض أو الأسس أو الأملاح حيث يتصعد الهيدروجين على المهبط و الأوكسجين على المصعد وفق المعادلة : H2O → 2 H2 + O2
و تصبح هذه الطريقة ملائمة اقتصادياً عند توفر الكهرباء و سيتم ذكر هذا لاحقاً في الدور الذي يلعبه الهيدروجين في نقل الطاقة الكهربائية المولدة في العنفات الريحية في عرض البحار .


استخدامات الهيدروجين:
في كتابه (طاقة الغد: الهيدروجين وخلايا الوقود.. من أجل كوكب نظيف خال من التلوث)، يقول الكاتب «بيتر هوفمان»: } بواسطة الهيدروجين، نستطيع تشغيل الطائرات والسيارات والقطارات والسفن والمصانع وتدفئة المنازل والمكاتب والمستشفيات والمدارس وغيرها، ويستطيع الهيدروجين، في حالته الغازية، نقل الطاقة كالكهرباء لمسافات بعيدة وعبر أنابيب النقل وبكفاءة عالية وبأقل تكلفة ممكنة، وباستطاعة الهيدروجين اعتمادا على تقنية وقود الطاقة أو الآلات الأخرى المولدة للطاقة أن يوفر لجمهور المستهلكين الكهرباء والماء النقي الصالح للشرب، والهيدروجين، بوصفه عنصرا كيميائيا، له استخدامات وتطبيقات متنوعة خلاف الطاقة الكهربائية ** . و يمكن أن نصنف استخدامات الوقود الهيدروجيني بشكل رئيسي ضمن الحقول الأربعة الرئيسية التالية :
1. وقود لوسائط النقل ( سيارات ، طائرات )العاملة على تقنية خلايا الوقود الهيدروجيني و تطبيقاتها الأوسع وصولاً لاستخدامها مستقبلاً في محطات توليد الطاقة .
2. استخدامه كبطارية بسعات تتدرج من الصغيرة المستخدمة في الحواسب الشخصية المحمولة و صولاً إلى بواخر نقل الهيدروجين التي تنقله من محطات الطاقة المتجددة إلى أماكن توليد الكهرباء البعيدة لحل مشاكل و تكاليف الشبكات الطويلة و الضياعات الطاقية عبرها .
3. وقوداً مولدأ للطاقة الحرارية باحتراقه المباشر في المراجل في محطات الطاقة ، إضافة لاستخدامه كوقود دفعي في الصواريخ .
4. وقودأ عاملاً في المفاعلات النووية ، و نخص بالذكر منها تقنية مفاعل ( ITER ) الذي يعمل على مبدأ توليد الطاقة على سطح الشمس .
إن المجالين الأول و الثاني يعتمدان بشكل مباشر على خلايا الوقود و التي تعتمد على تفاعلات الأكسدة و الإرجاع، أما المجالين الأخيرين فيعتمدان على القيمة الحرارية المرتفعة للهيدروجين و هي ( HHV=142 Mj/Kg ) . و يظهر الشكل نظرة كانت مستقبلية و تحولت إلى حقيقة مع بدء تنفيذ هذه المنظومة مع نهاية التسعينات ( 1998 )
في الشكل مخطط لدارة عنفة تستخدم مزيج الهيدروجين و الأوكسجين كوقود في الحراقات :






دارة توضح استخدام الهيدر





وجين لنقل الكهرباء بدلاً من الشبكة الكهربائية :
خلايا الوقود


خلايا الوقود
في عام 1839اختراع خلايا الوقود الهيدروجينية في إنجلترا وليام روبرت جروف، لعدم جدوى استخدامه في تلك الفترة ظل لأكثر من 130 سنة تقريبا مجمدا، وعادت للحياة في عقد الستينيات، وذلك عندما طورت شركة «جنرال إليكتريك» خلايا تعمل على توليد الطاقة الكهربائية اللازمة لإطلاق سفينتي الفضاء الشهيرتين «أبوللو» و«جيمني»، بالإضافة إلى توفير مياه نقية صالحة للشرب، كانت الخلايا في تلك المركبتين كبيرة الحجم وباهظة التكلفة، لكنها أدت مهامها دون وقوع أي أخطاء. ومن الممكن أن نعقد مقارنة بين تقنية خلايا الوقود الهيدروجينية وبطارية السيارة، من حيث فكرة دمج عنصري الهيدروجين والأكسيجين لإنتاج الكهرباء، لكن في حين أن البطاريات تتولى تخزين الوقود والعامل المؤكسد بداخلها مما يستوجب إعادة شحنها من حين لآخر، فإن خلايا الوقود تعمل بصفة مستمرة لأن وقودها والأكسجين يأتيان من مصادر خارجية، كما أن خلايا الوقود في حد ذاتها ليست سوى رقائق مسطحة تنتج كل واحدة منهافولطاً كهربائياً واحداً، وهذا يعني أنه كلما زاد عدد الرقائق المستخدمة كلما زادت قوة الجهد الكهربائي. مبدأ عمل الخلية :
1. ينساب الوقود الهيدروجيني على صفيحة المصعد ، في الوقت الذي ينساب فيه الأوكسجين على الصفيحة المقابلة و هي المهبط .
2. يسبب غشاء الفصل ( catalyst ) و الذي يوجد منها عدة أنواع منها ما يصنع من البلاتين انشقاق جزيء الهيدروجين إلى ذرتين تنشق كل منهما إلى أيون موجب ، و الكترون سالب .
3. تسمح صفيحة المحلل ( electrolyte ) فقط بمرور الأيونات ( البروتونات ) حاملة الشحنات الموجبة عبرها في حين تمنع مرور الاكترونات ، فتقوم هذه الأخيرة بالحركة عبر دارة وصل خارجية موصولة مع المهبط فتتحرك الالكترونات نحو المهبط فينشأ تيار كهربائي .
4. على المهبط تتحد الأيونات الهيدروجينية الموجبة مع الكتروناتها السالبة و مع الأوكسجين ليتشكل الماء الذي يتدفق خارج الخلية .


إن النماذج البسيطة التي تصنع منها الخلية الهيدروجينية و المستخدمة في وسائط النقل تنتج حوالي 1.16 Volt لذلك يتم وصل عدد كبير من الخلايا لتوليد الطاقة الكهربائية المطلوبة . يبين الشكل المجاور خلية هيدروجينية :







لقد تنوعت أماكن استخدام الخلية الهيدروجينية و اختلفت التصاميم و الأبعاد الموضوعة لها تبعاً للطاقة المطلوبة منها .


محطة توليد الطاقة الكهربائية بالهيدروجين:
بعض استعراض الطرق التي يمكن من خلالها الحصول على الهيدروجين و بغض النظر عن الطريقة التي يتم اتباعها ، و بعد معرفة مبدأ عمل خلايا توليد الكهرباء بالهيدروجين ، فقد وضعت تات و دراسات لمحطة توليد الطاقة الكهربائية باستخدام الهيدروجين ( خلايا الهيدروجين التي وضح مبدأ عملها سابقاً ) . عملياً أكبر محطة عالمية لتوليد الكهرباء بالهيدروجين تم بناؤها حتى الآن ، هذه المحطة موجودة في إحدى الجزر في ايسلانده و تقوم بتأمين احتياجات هذه الجزيرة الصغيرة من الطاقة الكهربائية ، حيث بلغت استطاعة هذه المحطة ( 8 MW) هذه الاستطاعة التي تعتبر صغيرة نوعاً ما مقارنة بمحطات الطاقة المتجددة ( شمسية ، ريحية ، مائية ....) ، و ضئيلة مقارنة بمحطات التوليد التقليدية ( البخارية و الغازية ) و لكن هذه المحطة شكلت قفزة هائلة في سبيل الوصول إلى ما سمي بالطاقة الدائمة و الوقود الأبدي ، و إن طاقة الهيدروجين على الرغم من هذه الانطلاقة الصغيرة تخطو للوصول إلى ما يسمى بعصر الهيدروجين . و يجدر التذكير هنا بأن توليد الكهرباء بالهيدروجين لا يحتاج ( لتلبية الاحتياجات المنزلية و الصناعية الصغيرة من ورش و غيرها )إلى محطات كبيرة ، بل إن اسطوانة من الهيدروجين بوصلها مع عدد من خلايا توليد الكهرباء بالوقود الهيدروجيني قد يفي بالغرض . و قد قامت بعض الشركات الصانعة بإنزال منتجات من هذا النوع إلى الأسواق و منها شركة Ballard .


يظهر الشكل ة مولدة منزلية للكهرباء تعمل بالهيدروجين .







و وضعت مخططات و تصاميم لمحطات توليد الكهرباء بالهيدروجين و شرعت بعض الدول في تنفيذ بعض هذه المشاريع و في مقدمتها اليابان التي كانت دائماً من الدول الطامحة إلى ضرورة إيجاد وقود يلبي الاحتياجات الصناعية دون أن تحده مشاكل الاحتياطات الاستراتيجية منه أو البيئة أو انخفاض القدرة الناتجة عنه . حتى وقتنا الحالي لا زالت عملية الحصول على الكهرباء بوساطة خلايا الهيدروجين تتم في منظومة مجمعة تضم جميع الوحدات ، و تقوم الشركات الصانعة بدراسة إمكانية إنشاء محطة ذات وحدات منفصلة عن بعضها البعض ، و لكن الأمر مرتبط بالوصول إلى استطاعات كبيرة ، و بشكل عام سواء كان توليد الكهرباء يتم في هذه المنظومة أو في محطة كبيرة فإن الأجزاء تقريباً هي نفسها مع اختلاف في القياسات وبعض الإضافات الأخرى ، و بالتأكيد مع اختلاف في الأرقام من استطاعة و مردود و تكلفة . يبين الشكل أجزاء وحدة توليد الكهرباء بالهيدروجين و هي :


1. مجمعة خلايا الوقود الهيدروجيني : و هي الوحدة التي يتم فيها ترتيب و تنضيد خلايا الوقود الهيدروجيني و توصيلها و تعد محرك النظام .
2. محضر الوقود : و قد تحدثنا سابقاً عن طرق إنتاج الهيدروجين ، و في هذه الوحدة يتم اعتماد طريقة جهاز تشكيل الوقود الهيدروكربوني ( REFORMER ) ، و تتم فيه العمليات:
- تنظيف و تنقية الوقود الهيدروكربوني ( و هو غاز المتان ) ، و تتم تحت درجة حرارة 300 C .
- إعادة تشكيل الغاز للحصول على الهيدروجين وفق التفاعل التالي :
CH4 + H2O → CO + 3H2 ( 650 C ، > 10% CO )
- معالجة الغاز بالماء لتحويل CO إلى CO2 :
CO + H2O = CO2 + H2 ( ~ 0.3% CO )
و معالج بدرجة حرارة (200-400) C و آخر بدرجة حرارة ( 100-200) C .
- وحدة تخفيض نسبة CO لتصل حتى 100 PPM تحت درجة 150 C .
3- الأجزاء الخارجية :
• و هي خزانات غاز المتان و خزانات الهيدروجين
• مروحة و ضاغط و مضخة
• نظام التبريد
• صمامات تحكم و منظمات ضغط
4- نظام التحكم






خزانات الهيدروجين: ( Hydrogen Tanks )
بما أن الهيدروجين من أخف العناصر و له وزن جزيئي صغير جداً فإن تسربه من الخزانات و الأنابيب يعتبر أسهل بكثير من تسرب الوقود التقليدي ، و على أية حال سواء كان استخدام هذا الهيدروجين كوقود للنقل أو لتوليد الطاقة فإنه من الضروري وجود طرق فعالة و قليلة التكلفة لتخزينه ، هذا بالإضافة إلى توافر وسيلة نقل الهيدروجين من المكان الذي ينتج فيه إلى مكان استخدامه . يمكن أن نقسم طرق تخزين الهيدروجين إلى ثلاثة طرق رئيسية : 1. بالشكل المضغوط 2. بالشكل السائل 3. بواسطة الرابطة الكيميائية
الهيدروجين المضغوط : ( Compressed hydrogen )
أن عملية ضغط الهيدروجين مشابهة لعملية ضغط الغاز ، و لكن بما أن الهيدروجين أقل كثافة فإن الضواغط يجب أن تزود بموانع تسرب أكثر إحكاماً . يضغط الهيدروجين عادة إلى قيم تتراوح بين 200-25- bar و ذلك في حال تخزينه في خزانات اسطوانية الشكل ذات سعات صغيرةبحدود 50 liters ، هذهالخزانات التي تصنع عادة من الألمنيوم أو من مركبات الكربون- الغرافيت و يمكن استخدامها في مجالي المشاريع الصناعية الصغيرة و النقل على حد سواء . أما في حال كان استخدام الهيدروجين سيتم على نطاق أوسع فإن ضغوطاً بقيم تتراوح بين 500-600 bar يمكن أن تستعمل لهذه الغاية ، و على الرغم من ذلك فإننا نلاحظ أن بعض أكبر خزانات الهيدروجين المضغوط في العالم تستعمل ضغوطاً تتراوح فقط 12-16 bar .

يتبع..


اقرأ أيضا::


fpe lljh. uk hg'hrm hgid]v,[dkdm > hg,r,] hgHf]d [hi.uk



رد مع اقتباس
إضافة رد

الكلمات الدليلية (Tags)
الطاقة, الهيدروجينية, الوقود, الأبدي, جاهزعن, الطاقة, الهيدروجينية

أدوات الموضوع
انواع عرض الموضوع

ضوابط المشاركة
لا تستطيع إضافة مواضيع جديدة
لا تستطيع الرد على المواضيع
لا تستطيع إرفاق ملفات
لا تستطيع تعديل مشاركاتك

كود [IMG]متاحة
كود HTML معطلة
Trackbacks are متاحة
Pingbacks are متاحة
Refbacks are متاحة


بحث ممتاز بحث عن الطاقة الهيدروجينية . الوقود الأبدي . بحث جاهزعن الطاقة الهيدروجينية . بحث متك

سياسةالخصوصية


الساعة الآن 08:26 AM


Powered by vBulletin™ Version 3.8.7
Copyright © 2019 vBulletin Solutions, Inc. All rights reserved.
Content Relevant URLs by vBSEO